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@ Intro to R and Financial Time Series

o Stationarity
o ARIMA Models

@ Forecasting
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Suggested Readings and Resources

@ The classic textbook on time series analysis
e Hamilton, 1994

@ Time series using R:

@ Econometrics in R, Farnsworth, 2008
@ An introduction to analysis of financial data with R, Tsay, 2014
© Manipulating time series in R, J. Ryan, 2017

@ Advanced time series using R

@ Analysis of integrated and cointegrated time series with R, Pfaff,
2008
@ Multivariate time series analysis, Tsay, 2013
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Introduction

Getting Started

o R

e The R base system - https://cran.r-project.org/
e RStudio - https://www.rstudio.com/products/rstudio/

@ Interactive Brokers - https://www.interactivebrokers.com

o Trader Workstation (TWS)
e or IB Gateway

LOGIN v OPEN ACCOUNT v FREE TRIAL

TRADER WORKSTATION /ACCOUNT MANAGEMENT
TWS Latest Account Management
™ws Finish an Application

TWS Beta

WEBTRADER API ACCESS

WebTrader 1B Gateway Latest
Webirader Beta 18 Gateway

PortfolioAnalyst Beta - NEW

T T T T
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Introduction

Time Series in R

@ The xts package, (J. A. Ryan & Ulrich, 2014), provides efficient
ways to manipulate time series!

library(xts)

library (lubridate)

n <- 100

set.seed(13)

x <- rnorm(n)

names (x) <- as.character(date(today()) - 0:(n-1))
x <- as.xts(x)

x[today(),]

VVVVVVyV vV

[,1]
2017-06-08 0.5543269

1
lubridate package, (Grolemund & Wickham, 2011), makes date format handling much easier 8/39



Introduction

Time Series in R

@ The xts package, (J. A. Ryan & Ulrich, 2014), provides efficient
ways to manipulate time series!

library(xts)

library (lubridate)

n <- 100

set.seed(13)

x <- rnorm(n)

names (x) <- as.character(date(today()) - 0:(n-1))
x <- as.xts(x)

x[today(),]

VVVVVVyV vV

[,1] x
2017-06-08 0.5543269

N
# it is easy to plot an xts object B uv '\/ \r

> plot(x)

T
Feb27  Mar20  Aprl0  MayOl  May22 Jun06
2017 2017 2017 2017 2007 2017

1
lubridate package, (Grolemund & Wickham, 2011), makes date format handling much easier 8/39




Introduction

Time Series in R [l

@ We can also look at x as a data frame instead

> x <- data.frame(Date = date(x), x = x[,1])
> rownames (x) <- NULL
> summary (x)

Date X
Min. :2017-03-01 Min. :-2.02704
1st Qu.:2017-03-25 1st Qu.:-0.75623
Median :2017-04-19 Median :-0.07927

Mean :2017-04-19 Mean :-0.06183
3rd Qu.:2017-05-14 3rd Qu.: 0.55737
Max. :2017-06-08 Max. : 1.83616

> # add year and month variables
> x8Y <- year(x$Date); x$M <- month(x$Date);
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Introduction

Time Series in R [l

@ We can also look at x as a data frame instead

> x <- data.frame(Date = date(x), x = x[,1])
> rownames (x) <- NULL
> summary (x)

Date X
Min. :2017-03-01 Min. :-2.02704
1st Qu.:2017-03-25 1st Qu.:-0.75623
Median :2017-04-19 Median :-0.07927

Mean :2017-04-19 Mean :-0.06183
3rd Qu.:2017-05-14 3rd Qu.: 0.55737
Max. :2017-06-08 Max. : 1.83616

> # add year and month variables
> x8Y <- year(x$Date); x$M <- month(x$Date);

@ The package plyr, (Wickham, 2011), provides efficient data split
summary

> library(plyr)
> max_month_x <- ddply(x,c("Y","M"),function(z) max(z[,"x"]))
> max_month_x # max value over month

Y M V1
2017 3 1.745427
2017 4 1.614479
2017 5 1.836163
2017 6 1.775163 9/39
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Introduction

IB API

@ The IBrokers package, J. A. Ryan, 2014, provides access to IB Trader
Workstation (TWS) API

@ The package also allows users to automate trades and receive real-
time data?

2 .
See the recent Webinar presentation by Anil Yadav here. 10/39


http://interactivebrokers.com/webinars/2017-WB-2633-QuantInsti-TradingusingRonInteractiveBrokers.pdf

Introduction

IB API

@ The IBrokers package, J. A. Ryan, 2014, provides access to IB Trader
Workstation (TWS) API
@ The package also allows users to automate trades and receive real-

time data?

> library(IBrokers)

> tws <- twsConnect ()

> isConnected(tws) # should be true

> ac <- reqAccountUpdates (tws) # requests account details

> security <- twsSTK("SPY") # choose security of interest

> is.twsContract (security) # make sure it is identified

> P <- reqHistoricalData(tws,security, barSize = '5 mins',duration = "1 Y")

TWS Message: 2 -1 2100 API client has been unsubscribed from account data.
waiting for TWS reply on SPY .... done.

2
See the recent Webinar presentation by Anil Yadav here. 10/39
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Introduction

IB API

@ The IBrokers package, J. A. Ryan, 2014, provides access to IB Trader
Workstation (TWS) API

@ The package also allows users to automate trades and receive real-

time data?

> library(IBrokers)

> tws <- twsConnect ()

> isConnected(tws) # should be true

> ac <- reqAccountUpdates (tws) # requests account details

> security <- twsSTK("SPY") # choose security of interest

> is.twsContract (security) # make sure it is identified

> P <- reqHistoricalData(tws,security, barSize = '5 mins',duration = "1 Y")

TWS Message: 2 -1 2100 API client has been unsubscribed from account data.
waiting for TWS reply on SPY .... done.

> Pl[c(1,nrow(P))] # look at first and last data points

SPY.Open SPY.High SPY.Low SPY.Close SPY.Volume SPY.WAP

2016-06-09 09:30:00 211.51 211.62 211.37 211.41 26766 211.501

2017-06-08 15:55:00 243.77  243.86 243.68 243.76 30984 243.772
SPY.hasGaps SPY.Count

2016-06-09 09:30:00 0 8378

2017-06-08 15:55:00 0 8952

2
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Stationarity
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Stationarity

Basic Concepts

@ Let y; denote a time series observed over t = 1,.., T periods

@ y; is called weakly stationary, if
Elye] = p and V[y:] = 0Vt (1)

i.e. expectation and variance of y are time invariant

3See for instance Tsay, 2005 12/39



Stationarity

Basic Concepts

@ Let y; denote a time series observed over t = 1,.., T periods

@ y; is called weakly stationary, if
Elye] = p and V[y:] = 0Vt (1)

i.e. expectation and variance of y are time invariant

@ Also, y; is called strictly stationary, if

f(ytlv "'a}/tm) = f(yf1+j7 "'7.ytm+j) (2)

where m, j, and (t1, ..., t,) are arbitrary positive integers>

3See for instance Tsay, 2005 12/39



Stationarity

Linearity

@ In this presentation, we focus on linear time series

@ Let us consider an AR(1) process in the form of

Yt = C+ Qyr1 + €, (3)

where ¢; ~ D(0,02) is iid

@ Intuitively, ¢ denotes the serial correlation of y;

¢ = cor(yt, yt—1) (4)

@ The larger the magnitude of | ¢ |— 1, the more persistent the
process is
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Stationarity

Unit Root

e Weak stationarity holds true if E[y;] = p < oo for all t, such
that

u=c+¢u:u:ﬁ (5)

@ The same applies to V[y;] = 02 < o0, Vt:

2
Aodiidsao T

@ A necessary condition for weak stationarity implies | ¢ |< 1

If ® =1, the process y; is a unit root
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Stationarity

Problems with Non-Stationarity

@ Non-stationary data cannot be modeled or forecasted
@ Results based on non-stationarity can be spurious
e e.g. false serial correlation in stock prices
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Stationarity

Problems with Non-Stationarity

@ Non-stationary data cannot be modeled or forecasted
@ Results based on non-stationarity can be spurious
e e.g. false serial correlation in stock prices

@ If y; has a unit root (non-stationary), i.e. ¢ = 1, with ¢ = 0,
then

Ye =Yt—1+ € (7)
Yi—1 = Yr-2 + €1 (8)

t
=Yt = Z €s (9)
s=0

where yp = €p
@ The process in (7) is unstable in nature,

e the initial shock, €y, does not dissipate over time
15/39



Stationarity

Transformation and Integrated Process

@ In linear time series, transformation takes the form of a first
difference
Ay =yt — Y1 (10)

e Taking the first difference of (7), we have
Ay =€ (11)

@ The process in (11) is stationary and does not depend on pre-
vious shocks
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Stationarity

Transformation and Integrated Process

@ In linear time series, transformation takes the form of a first
difference
Ay =yt — Y1 (10)

e Taking the first difference of (7), we have
Ay =€ (11)

@ The process in (11) is stationary and does not depend on pre-
vious shocks

Integrated Process

If y: has a unit root (non-stationary), while Ay = y; — y;—1 is
stationary, then y; is called integrated of first order, /(1).
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Stationarity

Example I: SPY ETF Stationarity
Figure: SPY ETF - Violation of Weak Stationarity
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Introduction Stationarity ARIMA Mo

Figure: SPY ETF - Violation of Strict Stationarity
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Stationarity

@ Let P; denote the price of the SPY ETF at time t and

p: = log(P¢) (12)

o If pis I(1), then Ap; should be stationary, where

P
Apt:Pt_Pt—1:|0g<P t1> N (13)
t_

denotes the return on the asset between t — 1 and t
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Stationarity

Figure: SPY ETF Returns - Weak Stationarity
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Stationarity

Figure: SPY ETF Returns - Strict Stationarity
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Stationarity

@ Let's take a look at the serial correlation of the prices

@ We will focus on the closing price

> find.close <- grep("Close",names(P))
> P_daily <- apply.daily(P[,find.close],function(x) x[nrow(x),])
> dim(P_daily)

[1] 252 1
> cor(P_daily[-1],lag(P_daily) [-1])

SPY.Close
SPY.Close 0.99238
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Stationarity

@ Let's take a look at the serial correlation of the prices

@ We will focus on the closing price

> find.close <- grep("Close",names(P))
> P_daily <- apply.daily(P[,find.close],function(x) x[nrow(x),])
> dim(P_daily)

[1] 252 1
> cor(P_daily[-1],lag(P_daily) [-1])

SPY.Close
SPY.Close 0.99238

@ On the other hand, the corresponding statistic for returns is

> R_daily <- P_daily[-1]/lag(P_daily)[-1] - 1
> cor(R_daily[-1],lag(R_daily)[-1])

SPY.Close
SPY.Close -0.06828564
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Stationarity

Test for Unit Root

@ It is important to plot the time series before running any tests
of unit root

@ It is recommended to use reasoning where the non-stationarity
might come from

e In the case of stock prices, time is one major factor

@ Assuming that a time series has a unit root when it does not
can bias inference
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Stationarity

Test for Unit Root

@ It is important to plot the time series before running any tests
of unit root

@ It is recommended to use reasoning where the non-stationarity
might come from

e In the case of stock prices, time is one major factor

@ Assuming that a time series has a unit root when it does not
can bias inference

Augmented Dickey-Fuller Test

@ A common test for unit root is the Augmented Dickey-Fuller
(ADF) test
@ It tests the null hypothesis whether a unit root is present in the
time series
e The more negative the statistic is the more likely to reject the
null

V.
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Stationarity

ADF Test in R

@ To test for unit root, we can use the adf.test function from the
'tseries’ package, (Trapletti & Hornik, 2017)

@ We look again at the daily prices and returns from Example |

> library(tseries)
> adf.test(P_daily);adf.test (R_daily)
Augmented Dickey-Fuller Test
data: P_daily
Dickey-Fuller = -2.3667, Lag order = 6, p-value = 0.4214
alternative hypothesis: stationary
Augmented Dickey-Fuller Test
data: R_daily

Dickey-Fuller = -6.3752, Lag order = 6, p-value = 0.01
alternative hypothesis: stationary
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ARIMA Models

ARIMA Models

(Autoregressive Integrated Moving Average)
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ARIMA Models

ARIMA Models

o Let y; follow an ARIMA(p, d, g) model, where

@ p is the order of autoregressive (AR) model
@ d is the order of differencing to yield a /(0) process
© g is the order of the moving average (MA) model

26/39



ARIMA Models

o Let y; follow an ARIMA(p, d, g) model, where

@ p is the order of autoregressive (AR) model
@ d is the order of differencing to yield a /(0) process
© g is the order of the moving average (MA) model

@ For instance,

AR(p) = ARIMA(p, 0,0) (14)
MA(q) = ARIMA(0, 0, q) (15)
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ARIMA Models

o Let y; follow an ARIMA(p, d, g) model, where

@ p is the order of autoregressive (AR) model
@ d is the order of differencing to yield a /(0) process
© g is the order of the moving average (MA) model

@ For instance,

AR(p) = ARIMA(p, 0,0) (14)
MA(q) = ARIMA(0, 0, q) (15)

Special Case

@ If y; has a unit root, i.e. /(1) , then first difference, Ay, yields
a stationary process

o Also, if Ay; follows an AR(1) process, then we conclude that
yt has an ARIMA(1, 1,0) process

26/39



ARIMA Models

ARIMA Identification

o ldentification of ARIMA can be facilitated as follows
@ Find the order of integration /(d) of the time series
@ e.g. most stock prices are integrated of order 1, d =1
@ Look at indicators in the data for AR and MA orders
@ A common approach is to refer to the PACF and ACF, respec-
tively*
© Consider an information criteria, e.g. AlC (Sakamoto, Ishiguro,
& Kitagawa, 1986)
© Finally, test whether the residuals of the identified model follow
a white noise process

4
See this discussion for further reading. 27/39
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ARIMA Models

ARIMA Identification

o ldentification of ARIMA can be facilitated as follows

@ Find the order of integration /(d) of the time series
@ e.g. most stock prices are integrated of order 1, d =1

@ Look at indicators in the data for AR and MA orders
@ A common approach is to refer to the PACF and ACF, respec-

tively*
© Consider an information criteria, e.g. AIC (Sakamoto et al.,
1986)

© Finally, test whether the residuals of the identified model follow
a white noise process

Ljung-Box Statistic

@ This statistic is useful to test whether residuals are serially cor-
related

@ A value around zero (large p.value) implies a good fit

4
See this discussion for further reading. 27/39
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ARIMA Models

Example Il: Identifying ARIMA Models

@ We consider a simulated time series from a given ARIMA model

e Specifically, we consider an ARIMA(3,1,2) process

> N <- 10°3

> set.seed(13)

> y <- arima.sim(N,model = list(order = c(3,1,2), ar = ¢(0.8, -0.5,0.4),
+ ma = ¢(0.5,-0.3))) + 200

# Note that y is a ts object rather than xts

Step 1: Plot and Test for Unit Root

> plot(y);
> ADF <- adf.test(y); ADF$p.value

[1] 0.4148301

# lag on ts object should be assigned as -1
> delta_y <- na.omit(y - lag(y,-1) )

> plot(delta_y);

> ADF2 <- adf.test(delta_y); ADF2$p.value

[1] o.01
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ARIMA Models

@ Step 1 tells us that d =1, i.e. y; follows an ARIMA(p, 1, q)
@ We need to identify p and g

Step 2: Identify p and g using the AIC information criterion

p.seq <- 0:4

q.seq <- 0:4

pq.seq <- expand.grid(p.seq,q.seq)

AIC.list <- lapply(1:nrow(pq.seq),function(i)
AIC(arima(y,c(pq.seqli,1],1,pq.seqli,2]))))
AIC.matrix <- matrix(unlist(AIC.list),length(p.seq))
rownames (AIC.matrix) <- p.seq

colnames (AIC.matrix) <- g.seq

VVV+VyVviVy

AlIC.matrix
p\g 0 1 2 3 4

3973.32  3075.67 2923.06 2914.88 2916.86
3542.07 2983.22 2916.50 2916.88 2883.02
3407.54 2949.70 2912.02 2907.37 2866.26
3053.10 2851.96 2844.42 2846.41 2848.31
2087.36  2845.46  2846.41 2847.81  2850.41

APWNHO
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ARIMA Models

o It follows from Step 2 that the optimal combination is (p = 3, g = 2)

@ Alternatively, we can use the auto.arima function

> identify.arima <- auto.arima(y)
> identify.arima

Series: y
ARIMA(3,1,2)

Coefficients:
arl ar2 ar3 mal ma2
0.7758 -0.4821 0.3875 0.5376 -0.2752
s.e. 0.0785 0.0448 0.0315 0.0836 0.0796

sigma”2 estimated as 0.9965: log likelihood=-1416.21
AIC=2844.42  AICc=2844.5 BIC=2873.87

@ In either case, we get consistent results indicating that the model is
ARIMA(3,1,2)
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ARIMA Models

@ Finally, we look at the residuals of the fitted model

Step 3: check residuals

> Box.test(residuals(identify.arima),type = "Ljung-Box")
Box-Ljung test

data: residuals(identify.arima)
X-squared = 0.00087004, df = 1, p-value = 0.9765

> library(forecast)
> Acf (residuals (identify.arima),main = "")

010
L

005
L

i
0.00

-005

-010
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Forecasting
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Forecasting

Forecasting

@ So far, we learned how to identify a time series model

e For application, we are interested in forecasting future values
of the time series

@ Such decision will be based on a history of T periods

e T periods to fit the model
e and a number of lags to serve as forecast inputs

@ Hence, our decision will be based on the quality of

@ the data
@ the fitted model
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Forecasting

Rolling Window

@ We will use a rolling window approach to perform and evaluate
forecasts

@ Set t = 150 and perform the following steps

@ Standing at the end of day t

@ Use T = 150 historic days of data (including day t) to fit an
ARIMA model

© Make a forecast for next period, i.e. t+ 1

@ Sett — t+ 1 and go back to Step 1

@ The above steps are repeated until t + 1 becomes the last ob-
servation in the time series
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Forecasting

Example Ill: Forecast the SPY ETF

In total we have 252 days of closing prices for the SPY ETF
To avoid price non-stationary, we focus on returns alone

This leaves us with 101 days to test our forecasts®

We consider three models for forecast

© Dynamically fitted ARIMA(p,0,q) model
@ Dynamically fitted AR(1) model
© Plain moving average (momentum)

library(forecast)

T. <- 150

arma.list <- numeric()
arl.list <- numeric()
ma.list <- numeric()

vVVVVyV

for(i in T.:(length(R_daily)-1) ) {
arma.list[i] <- list(auto.arima(R_daily[(i-T.+1):i])) # ARIMA(p,0,q)
arl.list[i] <- list(arima(R_daily[(i-T.+1):i],c(1,0,0))) # AR(1)
ma.list[i] <- list(mean(R_daily[(i-T.+1):i])) # momentum
F

++ + 4V

5The experiment relies on the forecast package, Hyndman, 2017 35/39



y_hat <- sapply(arma.list[T.:length(arma.list)],
function(x) forecast(x,1)[[4]] )

y_hat2 <- sapply(arl.list[T.:length(arl.list)],
function(x) forecast(x,1)[[4]] )

y_hat3 <- sign(unlist(ma.list))

forecast_accuracy <- cbind(mean(sign(y_hat) == sign(y)),

mean (sign(y_hat2) == sign(y)),

mean (sign(y_hat3) == sign(y)))

+ +VV+ v+ Vv

@ Finally, summarize the forecast accuracy in a table

ARIMA AR(1)  Momentum
Accuracy 55.45% 53.47% 52.48%

o Among the three, ARIMA performs the best
o Could be attributed to more flexibility in fitting the model over time
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e While AR(1) is a constrained ARIMA model, note that the autore-
gressive coefficient still changes dramatically over time

o Red line denotes the SPY ETF daily return
o Black line denotes the estimated AR(1) coefficient over time, i.e. ¢

I
8 +- aarll A *‘T\‘L“]\'ﬂ\)\j“;ﬁ'\w v\/\v\/\«/ﬂ/\’w\f -
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Summary

Summary

Importance of stationarity
Non-stationary models could imply spurious results
Plots are always insightful

Use tests carefully
Consider multiple time series to form forecasts
e Hence the idea of multivariate time series analysis
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Good Luck!
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