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Suggested Readings and Resources

The classic textbook on time series analysis

Hamilton, 1994

Time series using R:
1 Econometrics in R, Farnsworth, 2008
2 An introduction to analysis of financial data with R, Tsay, 2014
3 Manipulating time series in R, J. Ryan, 2017

Advanced time series using R
1 Analysis of integrated and cointegrated time series with R, Pfaff,

2008
2 Multivariate time series analysis, Tsay, 2013



6/39

Introduction Stationarity ARIMA Models Forecasting Summary

Introduction
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Getting Started

R

The R base system - https://cran.r-project.org/
RStudio - https://www.rstudio.com/products/rstudio/

Interactive Brokers - https://www.interactivebrokers.com

Trader Workstation (TWS)
or IB Gateway

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/
https://www.interactivebrokers.com
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Time Series in R

The xts package, (J. A. Ryan & Ulrich, 2014), provides efficient
ways to manipulate time series1

> library(xts)
> library(lubridate)
> n <- 100
> set.seed(13)
> x <- rnorm(n)
> names(x) <- as.character(date(today()) - 0:(n-1))
> x <- as.xts(x)
> x[today(),]

[,1]
2017-06-08 0.5543269

# it is easy to plot an xts object
> plot(x)
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1
lubridate package, (Grolemund & Wickham, 2011), makes date format handling much easier
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Time Series in R II

We can also look at x as a data frame instead
> x <- data.frame(Date = date(x), x = x[,1])
> rownames(x) <- NULL
> summary(x)

Date x
Min. :2017-03-01 Min. :-2.02704
1st Qu.:2017-03-25 1st Qu.:-0.75623
Median :2017-04-19 Median :-0.07927
Mean :2017-04-19 Mean :-0.06183
3rd Qu.:2017-05-14 3rd Qu.: 0.55737
Max. :2017-06-08 Max. : 1.83616

> # add year and month variables
> x$Y <- year(x$Date); x$M <- month(x$Date);

The package plyr, (Wickham, 2011), provides efficient data split
summary

> library(plyr)
> max_month_x <- ddply(x,c("Y","M"),function(z) max(z[,"x"]))
> max_month_x # max value over month

Y M V1
1 2017 3 1.745427
2 2017 4 1.614479
3 2017 5 1.836163
4 2017 6 1.775163
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IB API

The IBrokers package, J. A. Ryan, 2014, provides access to IB Trader
Workstation (TWS) API

The package also allows users to automate trades and receive real-
time data2

> library(IBrokers)
> tws <- twsConnect()
> isConnected(tws) # should be true
> ac <- reqAccountUpdates(tws) # requests account details
> security <- twsSTK("SPY") # choose security of interest
> is.twsContract(security) # make sure it is identified
> P <- reqHistoricalData(tws,security, barSize = '5 mins',duration = "1 Y")

TWS Message: 2 -1 2100 API client has been unsubscribed from account data.
waiting for TWS reply on SPY .... done.

> P[c(1,nrow(P))] # look at first and last data points

SPY.Open SPY.High SPY.Low SPY.Close SPY.Volume SPY.WAP
2016-06-09 09:30:00 211.51 211.62 211.37 211.41 26766 211.501
2017-06-08 15:55:00 243.77 243.86 243.68 243.76 30984 243.772

SPY.hasGaps SPY.Count
2016-06-09 09:30:00 0 8378
2017-06-08 15:55:00 0 8952

2
See the recent Webinar presentation by Anil Yadav here.

http://interactivebrokers.com/webinars/2017-WB-2633-QuantInsti-TradingusingRonInteractiveBrokers.pdf
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Stationarity
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Basic Concepts

Let yt denote a time series observed over t = 1, ..,T periods

yt is called weakly stationary, if

E[yt ] = µ and V[yt ] = σ2,∀t (1)

i.e. expectation and variance of y are time invariant

Also, yt is called strictly stationary, if

f (yt1 , ..., ytm) = f (yt1+j , ..., ytm+j) (2)

where m, j , and (t1, ..., tm) are arbitrary positive integers3

3
See for instance Tsay, 2005
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Linearity

In this presentation, we focus on linear time series

Let us consider an AR(1) process in the form of

yt = c + φyt−1 + εt , (3)

where εt ∼ D(0, σ2ε ) is iid

Intuitively, φ denotes the serial correlation of yt

φ = cor(yt , yt−1) (4)

The larger the magnitude of | φ |→ 1, the more persistent the
process is
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Unit Root

Weak stationarity holds true if E[yt ] = µ < ∞ for all t, such
that

µ = c + φµ⇒ µ =
c

1− φ
(5)

The same applies to V[yt ] = σ2 <∞, ∀t:

σ2 = φ2σ2 + σ2ε ⇒ σ2 =
σ2ε

1− φ2
(6)

A necessary condition for weak stationarity implies | φ |< 1

Unit Root

If φ = 1, the process yt is a unit root
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Problems with Non-Stationarity

Non-stationary data cannot be modeled or forecasted

Results based on non-stationarity can be spurious
e.g. false serial correlation in stock prices

If yt has a unit root (non-stationary), i.e. φ = 1, with c = 0,
then

yt = yt−1 + εt (7)

yt−1 = yt−2 + εt−1 (8)

⇒yt =
t∑

s=0

εs (9)

where y0 = ε0
The process in (7) is unstable in nature,

the initial shock, ε0, does not dissipate over time
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Transformation and Integrated Process

In linear time series, transformation takes the form of a first
difference

∆yt = yt − yt−1 (10)

Taking the first difference of (7), we have

∆yt = εt (11)

The process in (11) is stationary and does not depend on pre-
vious shocks

Integrated Process

If yt has a unit root (non-stationary), while ∆yt = yt − yt−1 is
stationary, then yt is called integrated of first order, I (1).
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Example I: SPY ETF Stationarity

Figure: SPY ETF - Violation of Weak Stationarity

Jul Sep Nov Jan Mar May

20
0

21
0

22
0

23
0

24
0

Date

µ1 = 215.02

µ2 = 233.88



18/39

Introduction Stationarity ARIMA Models Forecasting Summary

Figure: SPY ETF - Violation of Strict Stationarity
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Let Pt denote the price of the SPY ETF at time t and

pt = log(Pt) (12)

If pt is I (1), then ∆pt should be stationary, where

∆pt = pt − pt−1 = log

(
Pt

Pt−1

)
≈ rt (13)

denotes the return on the asset between t − 1 and t
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Figure: SPY ETF Returns - Weak Stationarity
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Figure: SPY ETF Returns - Strict Stationarity
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Let’s take a look at the serial correlation of the prices

We will focus on the closing price

> find.close <- grep("Close",names(P))
> P_daily <- apply.daily(P[,find.close],function(x) x[nrow(x),])
> dim(P_daily)

[1] 252 1

> cor(P_daily[-1],lag(P_daily)[-1])

SPY.Close
SPY.Close 0.99238

On the other hand, the corresponding statistic for returns is

> R_daily <- P_daily[-1]/lag(P_daily)[-1] - 1
> cor(R_daily[-1],lag(R_daily)[-1])

SPY.Close
SPY.Close -0.06828564
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Test for Unit Root

It is important to plot the time series before running any tests
of unit root

It is recommended to use reasoning where the non-stationarity
might come from

In the case of stock prices, time is one major factor

Assuming that a time series has a unit root when it does not
can bias inference

Augmented Dickey-Fuller Test

A common test for unit root is the Augmented Dickey-Fuller
(ADF) test

It tests the null hypothesis whether a unit root is present in the
time series

The more negative the statistic is the more likely to reject the
null
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ADF Test in R

To test for unit root, we can use the adf.test function from the
’tseries’ package, (Trapletti & Hornik, 2017)

We look again at the daily prices and returns from Example I

> library(tseries)
> adf.test(P_daily);adf.test(R_daily)

Augmented Dickey-Fuller Test

data: P_daily
Dickey-Fuller = -2.3667, Lag order = 6, p-value = 0.4214
alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: R_daily
Dickey-Fuller = -6.3752, Lag order = 6, p-value = 0.01
alternative hypothesis: stationary
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ARIMA Models
(Autoregressive Integrated Moving Average)
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ARIMA Models

Let yt follow an ARIMA(p, d , q) model, where
1 p is the order of autoregressive (AR) model
2 d is the order of differencing to yield a I (0) process
3 q is the order of the moving average (MA) model

For instance,

AR(p) = ARIMA(p, 0, 0) (14)

MA(q) = ARIMA(0, 0, q) (15)

Special Case

If yt has a unit root, i.e. I (1) , then first difference, ∆yt , yields
a stationary process

Also, if ∆yt follows an AR(1) process, then we conclude that
yt has an ARIMA(1, 1, 0) process
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ARIMA Identification

Identification of ARIMA can be facilitated as follows
1 Find the order of integration I (d) of the time series

e.g. most stock prices are integrated of order 1, d = 1

2 Look at indicators in the data for AR and MA orders

A common approach is to refer to the PACF and ACF, respec-
tively4

3 Consider an information criteria, e.g. AIC (Sakamoto, Ishiguro,
& Kitagawa, 1986)

4 Finally, test whether the residuals of the identified model follow
a white noise process

Ljung-Box Statistic

This statistic is useful to test whether residuals are serially cor-
related

A value around zero (large p.value) implies a good fit

4
See this discussion for further reading.

https://people.duke.edu/~rnau/411arim3.htm
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Example II: Identifying ARIMA Models

We consider a simulated time series from a given ARIMA model

Specifically, we consider an ARIMA(3,1,2) process

> N <- 10^3
> set.seed(13)
> y <- arima.sim(N,model = list(order = c(3,1,2), ar = c(0.8, -0.5,0.4),
+ ma = c(0.5,-0.3))) + 200
# Note that y is a ts object rather than xts

Step 1: Plot and Test for Unit Root

> plot(y);
> ADF <- adf.test(y); ADF$p.value

[1] 0.4148301

# lag on ts object should be assigned as -1
> delta_y <- na.omit(y - lag(y,-1) )
> plot(delta_y);
> ADF2 <- adf.test(delta_y); ADF2$p.value

[1] 0.01
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Step 1 tells us that d = 1, i.e. yt follows an ARIMA(p, 1, q)

We need to identify p and q

Step 2: Identify p and q using the AIC information criterion

> p.seq <- 0:4
> q.seq <- 0:4
> pq.seq <- expand.grid(p.seq,q.seq)
> AIC.list <- lapply(1:nrow(pq.seq),function(i)
+ AIC(arima(y,c(pq.seq[i,1],1,pq.seq[i,2]))))
> AIC.matrix <- matrix(unlist(AIC.list),length(p.seq))
> rownames(AIC.matrix) <- p.seq
> colnames(AIC.matrix) <- q.seq

AIC.matrix

p \ q 0 1 2 3 4

0 3973.32 3075.67 2923.06 2914.88 2916.86
1 3542.07 2983.22 2916.50 2916.88 2883.02
2 3407.54 2949.70 2912.02 2907.37 2866.26
3 3053.10 2851.96 2844.42 2846.41 2848.31
4 2987.36 2845.46 2846.41 2847.81 2850.41
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It follows from Step 2 that the optimal combination is (p = 3, q = 2)

Alternatively, we can use the auto.arima function

> identify.arima <- auto.arima(y)
> identify.arima

Series: y
ARIMA(3,1,2)

Coefficients:
ar1 ar2 ar3 ma1 ma2

0.7758 -0.4821 0.3875 0.5376 -0.2752
s.e. 0.0785 0.0448 0.0315 0.0836 0.0796

sigma^2 estimated as 0.9965: log likelihood=-1416.21
AIC=2844.42 AICc=2844.5 BIC=2873.87

In either case, we get consistent results indicating that the model is
ARIMA(3,1,2)
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Finally, we look at the residuals of the fitted model

Step 3: check residuals

> Box.test(residuals(identify.arima),type = "Ljung-Box")

Box-Ljung test

data: residuals(identify.arima)
X-squared = 0.00087004, df = 1, p-value = 0.9765

> library(forecast)
> Acf(residuals(identify.arima),main = "")
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Forecasting
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Forecasting

So far, we learned how to identify a time series model

For application, we are interested in forecasting future values
of the time series

Such decision will be based on a history of T periods

T periods to fit the model
and a number of lags to serve as forecast inputs

Hence, our decision will be based on the quality of
1 the data
2 the fitted model
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Rolling Window

We will use a rolling window approach to perform and evaluate
forecasts

Set t = 150 and perform the following steps
1 Standing at the end of day t
2 Use T = 150 historic days of data (including day t) to fit an

ARIMA model
3 Make a forecast for next period, i.e. t + 1
4 Set t → t + 1 and go back to Step 1

The above steps are repeated until t + 1 becomes the last ob-
servation in the time series
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Example III: Forecast the SPY ETF

In total we have 252 days of closing prices for the SPY ETF

To avoid price non-stationary, we focus on returns alone

This leaves us with 101 days to test our forecasts5

We consider three models for forecast
1 Dynamically fitted ARIMA(p,0,q) model
2 Dynamically fitted AR(1) model
3 Plain moving average (momentum)

> library(forecast)
> T. <- 150
> arma.list <- numeric()
> ar1.list <- numeric()
> ma.list <- numeric()

> for(i in T.:(length(R_daily)-1) ) {
+ arma.list[i] <- list(auto.arima(R_daily[(i-T.+1):i])) # ARIMA(p,0,q)
+ ar1.list[i] <- list(arima(R_daily[(i-T.+1):i],c(1,0,0))) # AR(1)
+ ma.list[i] <- list(mean(R_daily[(i-T.+1):i])) # momentum
+ }

5
The experiment relies on the forecast package, Hyndman, 2017
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> y_hat <- sapply(arma.list[T.:length(arma.list)],
+ function(x) forecast(x,1)[[4]] )
> y_hat2 <- sapply(ar1.list[T.:length(ar1.list)],
+ function(x) forecast(x,1)[[4]] )
> y_hat3 <- sign(unlist(ma.list))
> forecast_accuracy <- cbind(mean(sign(y_hat) == sign(y)),
+ mean(sign(y_hat2) == sign(y)),
+ mean(sign(y_hat3) == sign(y)))

Finally, summarize the forecast accuracy in a table

ARIMA AR(1) Momentum

Accuracy 55.45% 53.47% 52.48%

Among the three, ARIMA performs the best

Could be attributed to more flexibility in fitting the model over time
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While AR(1) is a constrained ARIMA model, note that the autore-
gressive coefficient still changes dramatically over time

Red line denotes the SPY ETF daily return
Black line denotes the estimated AR(1) coefficient over time, i.e. φ
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Summary

Importance of stationarity

Non-stationary models could imply spurious results

Plots are always insightful

Use tests carefully

Consider multiple time series to form forecasts

Hence the idea of multivariate time series analysis
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Good Luck!



40/39

References

References I

[]Farnsworth, G. V. 2008. Econometrics in r. Technical
report, October 2008. Available at http://cran. rproject.
org/doc/contrib/Farnsworth-EconometricsInR. pdf.

[]Grolemund, G., & Wickham, H. 2011. Dates and times made easy
with lubridate. Journal of Statistical Software, 40(3), 1–25.
Retrieved from http://www.jstatsoft.org/v40/i03/

[]Hamilton, J. D. 1994. Time series analysis (Vol. 2). Princeton
university press Princeton.

[]Hyndman, R. J. 2017. forecast: Forecasting functions for time
series and linear models [Computer software manual]. Re-
trieved from http://github.com/robjhyndman/forecast

(R package version 8.0)
[]Pfaff, B. 2008. Analysis of integrated and cointegrated time series

with r. Springer Science & Business Media.

http://www.jstatsoft.org/v40/i03/
http://github.com/robjhyndman/forecast


41/39

References

References II

[]Ryan, J. 2017. Manipulating time series data in r with xts & zoo.
Data Camp.

[]Ryan, J. A. 2014. Ibrokers: R api to interactive brokers trader
workstation [Computer software manual]. Retrieved from
https://CRAN.R-project.org/package=IBrokers (R
package version 0.9-12)

[]Ryan, J. A., & Ulrich, J. M. 2014. xts: extensible time series
[Computer software manual]. Retrieved from https://CRAN

.R-project.org/package=xts (R package version 0.9-7)
[]Sakamoto, Y., Ishiguro, M., & Kitagawa, G. 1986. Akaike infor-

mation criterion statistics. Dordrecht, The Netherlands: D.
Reidel.

[]Trapletti, A., & Hornik, K. 2017. tseries: Time series analy-
sis and computational finance [Computer software manual].
Retrieved from https://CRAN.R-project.org/package=

tseries (R package version 0.10-41.)

https://CRAN.R-project.org/package=IBrokers
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=tseries
https://CRAN.R-project.org/package=tseries


42/39

References

References III

[]Tsay, R. S. 2005. Analysis of financial time series (Vol. 543). John
Wiley & Sons.

[]Tsay, R. S. 2013. Multivariate time series analysis: with r and
financial applications. John Wiley & Sons.

[]Tsay, R. S. 2014. An introduction to analysis of financial data
with r. John Wiley & Sons.

[]Wickham, H. 2011. The split-apply-combine strategy for data anal-
ysis. Journal of Statistical Software, 40(1), 1–29. Retrieved
from http://www.jstatsoft.org/v40/i01/

http://www.jstatsoft.org/v40/i01/

	Introduction
	Stationarity
	ARIMA Models
	Forecasting
	Summary
	Appendix



